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ABSTRACT
"A boundary collocation method is presented for the computation of
eigenvalues and eigenfunctions of the Laplacian on bounded simply connected
plane regions with smooth boundary. Particular emphasis is placed on the

selection of an appropriate function space and its basis for the approximation

of the eigenfunctions. Numerical examples are presented.
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SIGNIFICANCE AND EXPLANATION

Several successful applications of the boundary collocation method for
computing eigenvalues and eigenfunctions of the Laplacian on certain regions
exist in the literature (see e.g. Fox, Henrici and Moler [5], and Moler
[(6]). However, Bates and Ng [1] reported that the method did not converge for
some regions. We suggest a strategy for selecting collocation points,
function space for the approximation of eigenfunctions, and basis of this
function space. Our results apply to regions for which there are convergence

difficulties with the methods referred to above.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




A COLLOCATION METHOD FOR COMPUTING EIGENVALUES
AND EIGENFUNCTIONS OF THE LAPLACIAN

Lothar Reichel

1. INTRODUCTION
Let 2 be a bounded simply connected plane open region with smooth

boundary 9Q, and let Q := QU 3. We consider the computation of

eigenvalues A and eigenfunctions u of

in &

[]
o

Au + Au

(1.1)
u=20 on 23 .

Several successful applications of the boundary collocation method to solve
this problem on certain regions exist in the literature, see e.g. Fox, Henrici
and Moler [5], and Moler [6]. The purpose of this paper is to describe a
strategy for choosing collocation points and function space for the
approximation of eigenfunctions. We also discuss the selection of basis of
the function space. The need for such a strategy is illustrated by the
computational results of Bates and Ng {1]. Choosing function space and
collocation points quite arbitrarily, they not seldom experience convergence
difficulties and conclude (1], p. 153, 'The point matching or collocation
method is an attractive economique technique from the point of view of
programming and computer time {....]. Unfortunately the method is not always
valid'. Nonconvex regions appear to be especially difficult.

We will represent eigenfunctions using an integral operator introduced by
Vekua [9). This operator maps functions analytic in £ onto solutions of
(1.1). The connection between eigenfunctions and analytic functions, to be

described in detail in Section 2, implies that the approximation of an

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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eigenfunction is equivalent to the approximation of a certain analytic
function on . The selection of function space for the approximation of
eigenfunctions can be studied by considering the approximation of analytic
functions in . Approximation of analytic functions in § by rational
functions with fixed poles is discussed in Section 3. When approximating
analytic functions by rational functions with fixed poles using interpolation,
the poles and interpolations points (= collocation points) should not be
allocated independently. The connection between analytic functions and
solutions of (1.1), as well as the reported difficulties in Bates and Ng (1],
suggest that the choice of function space for the approximation of
eigenfunctions and the selection of collocation points should not be done
independently either. We begin by allocating collocation points on 3Q, and
then define a function space which depends on the distribution of collocation
points. Our collocations scheme is presented in Section 4, which also

contains a brief discussion on the computation of error bounds derived by

Moler and Payne [7]. Numerical examples are found in Section 5.
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2. AN INTEGRAL REPRESFNTATION

3 This section summarizes some relevant results on the integral operator of
Vekua, and on the smoothness of the eigenfunctions. Let £ be as in Section
1, and let cP'V(3) denote the set of functions whose pth derivative
is Holder continuous on Q with H8lder constant Y. Let A denote a real

nonnegative constant. The following lemma is a special case of Theorem 4.2 of

Eisenstat [3].

Lemma 2.1

Let u e cz(m a} cp'Y(ﬁ), p+Y >0, satisfy
(2.1) Ay + du =20 in Q.
Then u has the representation

z
(2.2)  u(z) = Re(é(2) - % (z-z,) [ ¢(c)a1(/ Mz-g)(z-z ) )ag), z e,

Z

where ¢(z) is a function analytic in @ and ¢ € Py, J4(r) denotes
the 1st order Bessel function of the 1st kind. ¢ is uniquely determined by
the requirement Im¢(z1) = 0. z, is an arbitrary but fixed point in Q. z
denotes the complex conjugate of =z, and similarly for ;1.

Conversely, if ¢ is analytic in Q and ¢ € CP'Y(E), then u defined
by (2.2) satisfies (2.1) ana u e c2(2) n c®'V(d). .

The lemma shows that the approximation of an eigenfunction of (1.1) is
equivalent to the approximation of an analytic function ¢. If 3R |is
analytic, then u solving (1.t} can be continued analytically across 31,

hence ¢, defined by lemma 2.1, can be continued analytically across 3Q.

For nonanalytic boundary curves the following lemma gives the smoothness of

| ‘ u on 3. The lemma is a special case of Theorem 7.1 of Eisenstat [3].

Lemma 2.2

cnax(p,1).¥ ch(a). s

Let N e and let u solve (1.1). Then u €cC
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3. A METHOD FOR APPROXIMATING ANALYTIC OR HARMONIC FUNCTIONS

The connection between solutions of (1.1) and analytic functions showa by
lemma 2.1 motivates the present section. We summarize an approximation method
for analytic functions that is described in more detail in [8].

Lemma 3.1
Let T be a smooth curve exterior to 3R, and let S denote the doubly

connected region between T and 3Q. Let v be a solution of

Av = 0 in §

(3.1) v =1 on 98
v=0 on T

Then

av v
(3.2) c := | 3 (2)ldzl = - [ == (2)laz] > 0,

1] r
)

where n denotes the normal derivative, outward w.r.t. S. Let the point

n -1 dv
set {zk,n}k=1 be equidistributed w.r.t. c 7= on M, i.e. z,,, is an

arbitrary point on 3R, and the Z4,n’ j » 2, are determined by

Jen -1 3v i - 1
(3.3) f c I (z)]|az| = J—;——, = 1(1)n ,
z

where integration is done counter-clockwise along 3. Let the point set

n-1 R -1 dv
(wk,n}k=1 be equidistributed w.r.t. -¢ 7= on T. Let ¥(z) be a

function analytic on and interior to the level curve Pu := {z : v(z) =y}

for some u, O < yu < 1. Finally let rn(z) be the function in

Yyl z~w )iz - w y 1)

. = 1 -
(3.4) Q := span{1,(z Yin zn n=1,n




uniquely determined by interpolating $(z) at the nodes {zk n}:=1' Then
’
lim sup J¥(z) - rn(z)|1/n ¢ e 2m{1-u)
n*® zeIN
»

Proof. A proof based on results of Walsh [10] is presented in [8].

n
Assume that the nodes {zk n}k~1 are given on 3R and ennumerated so
,n’ k=

that zk'n precedes zk+1,n’ k = 1(1)n - 1, when 23R is traversed counter-

clockwise. We wish to determine a set of poles {wk n}k=1 equidistributed
’
-1

W.r.t. -c-1 2! on a level curve of v. Assume that ¢ 5% is a piecewise

9n
. R n
constant function with jumps at the 2 ne The assumption that {zk,n}k=1 be
~1 3 -1 3
equidistributed w.r.t. ¢ sﬁ and ¢ [ 5§ (z)|dz| = 1 determines gﬁ
an

uniquely on 3. This suggests that we determine level curves I and point

}“.1 by solving (3.1) as an initial value problem for v, with

sets {wk,n =1

v and v known on 9. A simple numerical method for solving this initial

3n
value problem is described in (8] and computed examples are given in Section
5. Here we only note that we do not need to solve the initial value problem

to high accuracy, and we generally do not put I' very far from 3.

Therefore we can obtain a satisfactory approximate solution to this ill-posed

We next turn to the choice of basis for the representation of

problem.
rn(z). The basis implicit in the definition (3.4) of Q, is generally ill-
conditioned. 1In (8] it is shown that the following basis functions are fairly
well-conditioned

[(2,(z) :=1
(3.5) n zZ -z n-1 z -w

t(z) = 1 —LB g KBy g -
3=t "k,n I, 3= Jon
l 3%

This basis we will use when computing eigenvalues and eigenfunctions.

S —— .
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4. THE COLLOCATION METHOD

The eigenvalue problem (1.1), we solve as a sequence of Dirichlet

problems, i.e. for given A we solve
(4.1a) Au + Au =0
(4.1b) ua=20
for u and determine iteratively values of ) for which (4.1) has nontrivial
solutions u. The iteration method has previously been used by Moler [5].
Equations (4.1) are solved by boundary collocation. lLet {zk,n}:=1 and

{w }n-1 be point sets on 30 and T, respectively, as described in

k,n" k=1

Section 3. let the set of collocation points (z: m}:=1' m=2n- 1, be
’

distributed equidistantly on 3 w.r.t. to the same density function as

{2 }n .« Introduce the particular solutions of (4.1a),

k,n" k=1
[ o z a1(/ Mz=2) (z-2,))
Vylz,h) 2= Re(1 - 0.50(z-z, ) [ ac
n z E—
1,n /.\(z-f.')lz-z1)
. z J1(/X(z-c)(;-§1))
Vyy(zad) i= Re(f,(2) - 0.5M(z-z, ) i £,(2) Y, —— &)
(4.2) % 1,n X(Z'C)(z-z1)

j=1()n -1,

. z J1(/X(2-C)(E-E1))
Vy5eq(2rA) 5= Im(!.j(z) - 0.5M(z-z, ) £ £,(2) —
1,n Y Az-C) (z-2)

j=1(")n-1,

at)

where the functions 2j(z) are defined by (3.5). We require the boundary

condition to be satisfied at the collocation points. This yields tha system

of equation

A

CIWIII.- MW o 54y ST 0. v 5 oy, g =t




2n-1
(4.3) )) ajVj(z; LM =0, k=1Vm m=22-1.
3=1 '

We seek A such that (4.3) has a nontrivial solution

a = (01,02,...,a2n_1)r, or equivalently, we want the matrix
c = = 9n=
(4.4) A := [akj], akj 1= Vj(zk'm,k), j=1(1)2n-1, k= 1(1)m, m 2n-1 ,

to be singular. We achieve this by computing the singular value decomposition
of A = a(})),

A=uzv',
where U,V are orthonormal (2n - 1) x (2n - 1) matrices and

), with 0o, 20, > .c. 2 0O > 0. We determine

L= d1ag(01,02,--.:0 1 2 2n-1

2n-1

A such that o (A\) vanishes, i.e. first we tabulate

2n-1 = %2n-1
A dzn_1(k) to find a local minimum, and then by fitting quadratics we
.. 2 2
minimize 02n_1(A). (02n_1(k) is a smooth function of A while ozn_1(k)
*
is not). Let A denote a value of A corresponding to a local minimum of

*
02n_1(l). A is an approximate eigenvalue of (4.1). A method to estimate

*
or bound the error in A is discussed below. Following Moler [5], we note

*
that A satisfies

*
min min IA(A)gl2 = min TA(A )gl2
A lgl2=1 Igl2=1

and that a is the last column of V. Hence,

2n=-1 .
(4.5) wz) = § av.(z,A)
L %y
L ] L 4
is an approximate eigenfunction. If also °2n-2(x ) is near 0, then A




is an approximate double eigenvalue. The coefficients of the other
eigenfunction are in the next to last column of V.
The integrals in (4.2), we compute by integrating along 2939 and using a

Lobatto rule between each pair of collocation points ((z5 Vo ( )). We

2
k,m k+1,m

note that the functions lj(z) have to be computed only once at the Lobatto

abscigssae. The minimization scheme for c;n_‘(k) is designed so that we in

*
each iteration know values XL'Ar with Xz <A < Xr. As the iterations

proceed Xr - Xl + 0. This enables the computation of the Bessel functions in

the integrands (4.2) by linear interpolation when 0 < Ar - XL is small.

Remark 4.1
In order to facilitate the detection of eigenvalues the basis functions used

should be well-conditioned in the sense that o, _,(A) >> 0 for A  between

2n

*
local minima of 02n_1(l). Moreover, for X = )X , a local minimum of

02n_1(k), there should be a k such that

A" . . .
0, (A1) > 0, ¢ ) % 0,0 )™ .. = Oop-gP ) = 0,
so that the multiplicity of the eigenvalue can be determined easily. 1In all
computed examples the basis (4.2) satisfied these requirements. o
Remark 4.2

The allocation of collocation points =z can be done quite arbitrarily. 1In

c
k,m
all examples we have distributed the collocation points equidistantly w.r.t.
arc length. .
Remark 4.3

The choice of function space for the approximation of eigenfunctions is based
on lemma 3.1, which discusses approximation of analytic functions by certain

rational function. By taking real and imaginary parts, we obtain the harmonic

functions V1(z,0),...,V2n_1(z,0). Approximation of harmonic functions by

boundary collocation has so far been studied only when the approximating

v
}
E
|




functions are harmonic polynomials, see Curtiss [2]. These results suggest

should be used when approximating by

c ,m
that the collocation points {zk,m}k=1

function (4.2) with A = 0. For A > 0 no results are known, and we expect
for large values of XA least squares collocation to yield better
approximations. In least squares collocation, see Moler [6], one chooses
m>2n -1 in (4.3) and solves (4.3) in the least squares sense. Again this
leads to the singular value decomposition of the matrix (4.4), but now one
seeks local minima of X + O;n_1(l)°(ff uzdxdy)-1, where u is defined by
(4.5). Numerical experiments indicatz that, indeed, the approximation errors
in the eigenvalues and eigenfunctions decrease when least square collocation
is used. However, the decrease in error was small, and in all computed
examples a more efficient way to reduce the error was to increase the number
of basis functions and let m = 2n-1. In the numerical examples referred to,
90 was analytic and A < 10. .
We conclude this section with some comments on the computation of error
bounds as described in Moler and Payne [7]. Let A' be a real nonnegative

*
number and define u (z) as

*
Let Xk be the eigenvalue of (1.1) closest to A , and let uk(z) be the

eigenfunction belonging to Ak. Moler and Payne [7) show how bounds for

* »
A - and u - u can be computed. We only give their result on bounds

k
Y
for - k-
Lemma 4.1
* 1 * -1
Let € := max |u (z)]*(area of Q) /2'(ff (u )zdxdy) . Then there is an
zed Q . N
. . A A

eigenvalue of Ak of (4.1) in the interval T+ e < Ak < raad L]




{

L 4
The double integral ff (u )zdxdy we compute by numerical quadrature,
1
and we neglect round-offs during all computations. We therefore only compute

error estimates. The integration rule of the next lemma was chosen because of
its simplicity.
Lemma 4{2
h h =
Let I := {(j,k) : {(x,¥) : |jh = x| € =, |xh - y| < 3} C R} . Then for a

sufficiently smooth function u which vanishes on 23fl,

1ff uz(x,y)dxdy - n? )) w?(3n,kh) ] € w3,
Q (j,k)CI1
where C 1is a constant.
Proof. See appendix. [ ]
}
&
!
!
4
E
!
I
-10-




5. NUMERICAL EXAMPLES

In all examples t4e collocation points {z: _}:_1, m = 2n-1, and the
’

points {zk,n}:=1 in the definition of the function (3.5) are equidistributed

on 32 w.r.t. arc length. By solving (3.1) as an initial value problem for

v and %% on 9N we compute approximate level curves T of v and point

sets {wk’ }:;: which are approximately equidistributed w.r.t. -c-1 %ﬁ on
~ n-1

T. Below we show graphs with £, curves | and points {'k,n}k=1° In all
examples the integrals in (4.2) have been computed by integrating along df
and using a 10-point Lobatto rule between each pair of collocation points

(zg'm,z§+1'm), j = 1{1)m = 1. The double integrals in the error bound of
Lemma 4.1 have been computed by the method of Lemma 4.2. We have computed

ff uzdxdy for different values of h, and decreased h until we were
cgrtain that the value of the integral was known with 2 significant digits.

All computations were done on a VAX 11/780 in double precision, i.e. with 12
significant digits. In the first example, we determine eigenvalues for an
elliptic membrane for which the lowest eigenvalue is known with high accuracy.
Ex. 5.1 2 := {(x,y) : % x2 + y2 < 1}. Figure 5.1 shows £, approximate
level curves F and the points "j,S' j = 1(1)8, at the vertices of the
outermost approximate level curve. The "j,a are used to define 17 basis
functions (4.2).

Figure 5.2 is similar to Figure 5.1, but now 16 points v5,17°

§ = 1(1)16 are shown on the outermost approximate level curve ?. The 16
points ¥y,17 define 33 basic functions (4.2).

The € in the table is defined in lemma 4.1. The table gives the 3

smallest eigenvalues determined, the smallest of which is known, see [5], to

lie in the interval [3.56672658, 3.566726614).

S . IR

~ - .
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Figure 5.1: 17 basis functions
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Figure 5.2: 33 basis functions




No. Of
Basis Facts

17

33

17

33

17

33

Computed
Eigenvalue

3.56672688

3.566726603

6.27535

6.275432466

10.034

10.028402

8.5

2.8

4.7

9.4

1.2

2.2

The error estimates generally appear

Ex. 5.2 Let 1 be the interior of the curve

-9

=5

to be gquite conservative.

Est. Upper Bound for Eigenvalue
Est. Lower Bound for Eigenvalue

3.5670

6.306

6.245

6.275439

6.275426

10.02863

10.02817

M = {x(t) + iy(t), x(t) := 1.4 cos(t) + 2.8 cos(2t) ~ 2.8 ,

see Figure 5.3.

- 0.49 sin(4t) - 0.74,

0< ¢t < 2r),

y(t) := 1.6 sin(t) + 2.45 sin(t - 0.2) + 0.98 gin(2t) -

The lowest eigenvalue has been computed with different

numbers of basis functions

. — e —










No. of Computed Est. Upper Bound for Eigenvalue
Basis Pacts Eigenvalue € Est. Lower Bound for Eigenvalue
33 1.2259 2.4
49 1.22980 1.4
1.241
65 1.2305134 8.4 1073 e
1.220
1.2353
97 1.23053147 3.8+ 103 aeee- -
1.2252

The points 'j,n for the different bases are shown in Pigures 5.3-5.6. The

allocation of poles 'j for 33 and 65 basis functions is similar, and so is

the allocation for 49 and 97 basis functions. The example shows that the
allocation of poles does influence the rate of convergence, but the computed

eigenvalues are not very sensitive to differences in allocation. .
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APPENDIX

Proof of lemma 4.2

we assume for simplicity that u e c‘(ﬁ). let S be the square

l(x,y) s x| < %. iyl < %] and let f = uz. Then, Engels (4], ch. 8,

T := JJ f(x,y)dxdy =
8

2
= %’ (2£(0,0) + £(h,0) *+ £(~h,0) + £(0,h) + £(0,-h)) + O(hs) .

This yields

2 2
T = hzf(ﬁ'O) + h4(‘a—'§ (0'0) + 'a_";' (0,0)) + °(h6) .
Ix Y

et 5= U lmyp) s lm-xl<B xn-gl< 3}. then

(j,x)elx

[[ £(x,y)axdy = [[ £lx,y)axdy + /] fix,y)axdy =
a s a\s
2 4 a%e a2e
= h Y  £(3n,xh) +h ] (=5 (hxn) + 3 (3h,xh)) +

+ [[ f(x,y)ddy + O(hs) .

Qs
a2e . 2%t Juy2 , (duy2
We now make use of that f = w., =—+—= 2((-—) + (—3) + uAu) yields
2 ax oy
Ix oy
-18-




2 2
3
n? (3£ (sn,xn) + l—-zf- ($h.kh)) =
(§.x)er 3x dy
2 2
= {f 9——§- (x,y) + L% (x,y) dxdy + o(n?) =
s 9x dy
S
3uy2 duy2 2 Ju 2
==2[I (37) *(3-;) rubudxdy + 0(h%) = 2 [ ug ds + 0,
3s

S

where %; denotes the outward normal derivative from §.
Since grad u is

"

the distance between 2s and 90 is < h.

By definition of

bounded in

62,63.

S,

= )

R, and u=0 on 3R, we have II 5% as| < d1h, for some constant d,.
3s

similarly ff uzdxdy < dzh2 II dxdy € d3h3, for some constants

Q\s Q\s

This completes the proof.

LR/ed
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